Day 14

Fundamental Problems in Mobile Robotics

Sensing the Environment

- Bugl and Bug2 use a perfect contact sensor
- we might be able to achieve better performance if we equip the robot with a more powerful sensor
- a range sensor measures the distance to an obstacle; e.g., laser range finder
- emits a laser beam into the environment and senses reflections from obstacles
- essentially unidirectional, but the beam can be rotated to obtain 360 degree coverage

Tangent Bug

- assumes a perfect 360 degree range finder with a finite range
- measures the distance $\rho(\mathrm{x}, \theta)$ to the first obstacle intersected by the ray from x with angle θ
- has a maximum range beyond which all distance measurements are considered to be $\rho=\infty$
- the robot looks for discontinuities in $\rho(\mathrm{x}, \theta)$

Tangent Bug

Tangent Bug

currently, bug thinks goal is reachable

Tangent Bug

- once the obstacle is sensed, the bug needs to decide how to navigate around the obstacle
\aleph
goal

- move towards the sensed point O_{i} that minimizes the distance $d\left(x, O_{i}\right)+d\left(O_{i}, q_{\text {goal }}\right)$ (called the heuristic distance)

Tangent Bug

- if the heuristic distance starts to increase, the bug switches to boundary following

- full details
- Principles of Robot Motion:Theory, Algorithms, and Implementations
- http://www.library.yorku.ca/find/Record/2I54237
- nice animation
- http://www.cs.cmu.edu/~motionplanning/student_gallery/2006/st/hw2pub.htm

Localization for a Point Robot

- Bugl and Bug2 assume that the robot can perfectly sense its position at all times
- consider a $1 D$ point robot (moves on the x-axis) that moves a distance Δx_{i}
- after taking N steps starting from x_{0} it can be shown that (textbook Chapter 2):

$$
\begin{gathered}
\mathrm{E}\left[x_{N}\right]=x_{0}+\sum_{i=1}^{N} \Delta x_{i} \\
\operatorname{Var}\left[x_{N}\right]=N \sigma^{2}
\end{gathered}
$$

Characterizing Error

- $1 D$ normal, or Gaussian, distribution
- σ standard deviation
> $\Sigma=\sigma^{2}$ variance

Characterizing Error

in $2 D$
isotropic

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Characterizing Error

in $2 D$
anisotropic

$$
\Sigma=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]
$$

Characterizing Error

in $2 D$
anisotropic

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Characterizing Error

in $2 D$
anisotropic

$$
\Sigma=\left[\begin{array}{ll}
2.5 & 1.5 \\
1.5 & 2.5
\end{array}\right]
$$

